
Pydro

Nils Deppe

Jun 07, 2020

OVERVIEW:

1 Derivatives 3

2 Plotting 1d Simulation 5

3 Reconstruction Schemes 7

4 Time Steppers 15

5 References 19

6 Indices and tables 21

Bibliography 23

Python Module Index 25

Index 27

i

ii

Pydro

Pydro is a collection of reconstruction schemes and other components needed to solve systems of equations that can
develop discontinuities, such as Burgers equation, and compressible Newtonian Euler. If Numba is available the code
will be JITed for better performance.

OVERVIEW: 1

Pydro

2 OVERVIEW:

CHAPTER

ONE

DERIVATIVES

Pydro provides both midpoint-to-node and midpoint-and-node-to-node [1] finite-difference schemes with up to tenth-
order accuracy. Additionally, variable-order methods are provided where the order of the difference scheme used is
adjusted locally at each grid point according to an input array of orders to use at each grid point.

class Derivative.Scheme
An enum of the various different differentiation routines that are supported.

MD = 1
Second-order finite-difference derivative [1]

𝜕𝑞𝑖
𝜕𝑥

≈
𝑞𝑖+1/2 − 𝑞𝑖−1/2

∆𝑥

MD10 = 5
Tenth-order finite-difference derivative using only face values [1]

𝜕𝑞𝑖
𝜕𝑥

≈ 1

∆𝑥

[︂
19845

16384
(𝑞𝑖+1/2 − 𝑞𝑖−1/2) − 735

8192
(𝑞𝑖+3/2 − 𝑞𝑖−3/2) (1.1)

+
567

40960
(𝑞𝑖+5/2 − 𝑞𝑖−5/2) − 405

229376
(𝑞𝑖+7/2 − 𝑞𝑖−7/2)(1.2)

+
35

294912
(𝑞𝑖+9/2 − 𝑞𝑖−9/2)

]︂
(1.3)

MD4 = 2
Fourth-order finite-difference derivative using only face values [1]

𝜕𝑞𝑖
𝜕𝑥

≈ 1

∆𝑥

[︂
9

8
(𝑞𝑖+1/2 − 𝑞𝑖−1/2) − 1

24
(𝑞𝑖+3/2 − 𝑞𝑖−3/2)

]︂
MD6 = 3

Sixth-order finite-difference derivative using only face values [1]

𝜕𝑞𝑖
𝜕𝑥

≈ 1

∆𝑥

[︂
75

64
(𝑞𝑖+1/2 − 𝑞𝑖−1/2) − 25

384
(𝑞𝑖+3/2 − 𝑞𝑖−3/2) (1.4)

+
3

640
(𝑞𝑖+5/2 − 𝑞𝑖−5/2)

]︂
(1.5)

MD8 = 4
Eighth-order finite-difference derivative using only face values [1]

𝜕𝑞𝑖
𝜕𝑥

≈ 1

∆𝑥

[︂
1225

1024
(𝑞𝑖+1/2 − 𝑞𝑖−1/2) − 245

3072
(𝑞𝑖+3/2 − 𝑞𝑖−3/2) (1.6)

+
49

5120
(𝑞𝑖+5/2 − 𝑞𝑖−5/2) − 5

7168
(𝑞𝑖+7/2 − 𝑞𝑖−7/2)

]︂
(1.7)

3

Pydro

MDV = 6
Variable-order finite-difference derivative using only face values.

The order is adjusted according to the order_used argument passed to Derivative.
differentiate_flux()

MND10 = 10
Tenth-order finite-difference derivative using face and node values (MND) [1]

𝜕𝑞𝑖
𝜕𝑥

≈ 1

∆𝑥

[︂
5

3
(𝑞𝑖+1/2 − 𝑞𝑖−1/2) − 10

21
(𝑞𝑖+1 − 𝑞𝑖−1)

+
5

42
(𝑞𝑖+3/2 − 𝑞𝑖−3/2) − 5

252
(𝑞𝑖+2 − 𝑞𝑖−2)

+
1

630
(𝑞𝑖+5/2 − 𝑞𝑖−5/2)

]︂
MND4 = 7

Fourth-order finite-difference derivative using face and node values (MND) [1]

𝜕𝑞𝑖
𝜕𝑥

≈ 1

∆𝑥

[︂
4

3
(𝑞𝑖+1/2 − 𝑞𝑖−1/2) − 1

6
(𝑞𝑖+1 − 𝑞𝑖−1)

]︂
MND6 = 8

Sixth-order finite-difference derivative using face and node values (MND) [1]

𝜕𝑞𝑖
𝜕𝑥

≈ 1

∆𝑥

[︂
3

2
(𝑞𝑖+1/2 − 𝑞𝑖−1/2) − 3

10
(𝑞𝑖+1 − 𝑞𝑖−1)

+
1

30
(𝑞𝑖+3/2 − 𝑞𝑖−3/2)

]︂
MND8 = 9

Eigth-order finite-difference derivative using face and node values (MND) [1]

𝜕𝑞𝑖
𝜕𝑥

≈ 1

∆𝑥

[︂
8

5
(𝑞𝑖+1/2 − 𝑞𝑖−1/2) − 2

5
(𝑞𝑖+1 − 𝑞𝑖−1)

+
8

105
(𝑞𝑖+3/2 − 𝑞𝑖−3/2) − 1

140
(𝑞𝑖+2 − 𝑞𝑖−2)

]︂
MNDV = 11

Variable-order finite-difference derivative using face and node values (MND).

The order is adjusted according to the order_used argument passed to Derivative.
differentiate_flux()

Derivative.differentiate_flux(scheme, dx, numerical_fluxes, center_flux=None, or-
der_used=None)

Compute the derivatives using the scheme and spacing dx.

Applies the finite-difference scheme given by the scheme argument to all variables in the numerical_fluxes.

Parameters

• scheme (Derivative.Scheme) – The finite-difference scheme to use.

• dx (double) – The grid spacing

• numerical_fluxes (list) – The numerical fluxes at the cell faces.

• center_flux (list) – The flux at the cell centers. Only needed for MND schemes.

• order_used (list) – A list of int at each cell indicating the finite-difference order to
use at the cell. Normally this order is determined by the reconstruction scheme.

4 Chapter 1. Derivatives

CHAPTER

TWO

PLOTTING 1D SIMULATION

Pydro provides plotting routines for plotting snapshots at a single time, as well as for plotting spacetime diagrams of
quantities.

Plotting.generate_plot_with_reference(x, x_ref, func, reference_solution, quantity_name,
file_name, ref_label, every_n=0, set_log_y=False)

Generate a plot of a snapshot from a 1d simulation and write it to disk.

Parameters

• x (list) – The x-coordinates on which func is defined.

• x_ref (list) – The x-coordinates on which reference_solution is defined.

• func (list) – The function/variable to plot.

• reference_solution (list) – The reference solution to plot.

• quantity_name (str) – The label for the function/variable being plotted.

• file_name (str) – The name of the file to write.

• ref_label (str) – The reference label. Typically either ‘Exact’ or ‘Reference’ depend-
ing on whether the reference solution is an exact analytic solution or obtained from a high-
resolution simulation.

• every_n (int) – If non-zero only plot every nth grid point in func.

• set_log_y (bool) – If True then the y-axis is plotted on a log scale.

Plotting.generate_spacetime_plot(file_name, var, var_name, x, times, smoothen, set_log_y,
vmin=None, vmax=None, time_max_elements=100,
x_max_elements=200)

Generate a spacetime plot from a 1d simulation and write it to disk.

Parameters

• file_name (str) – The name of the file to write.

• var (list) – A list of the variable/function to plot at each time. The data must be in the
same order as the times argument.

• var_name (str) – The name of the variable being plotted.

• x (list) – The x-coordinates on which var is defined. Assumed to be time-independent.

• times (list) – A list of the times at which data was recorded during the evolution.

• smoothen (bool) – If True applies a gouraud smoothening to the data during rendering.

• set_log_y (bool) – If True then the log of var is plotted.

• vmin (double) – If specified sets the lower limit of the range for plotting var.

5

Pydro

• vmax (double) – If specified sets the upper limit of the range for plotting var.

• time_max_elements (int) – The maximum number of cells to plot in time. Increas-
ing this increases the temporal resolution but makes the generated images larger and more
expensive to render.

• x_max_elements (int) – The maximum number of cells to plot in space. Increasing this
increases the temporal resolution but makes the generated images larger and more expensive
to render.

6 Chapter 2. Plotting 1d Simulation

CHAPTER

THREE

RECONSTRUCTION SCHEMES

Pydro provides two variants of reconstruction schemes. The first are the standard reconstruction schemes including
TVD and WENO-type schemes, while the second are positivity-preserving adaptive-order schemes. The two scheme
classes have different interfaces and so must be used slightly differently. The interface for each is documented in the
sections below.

3.1 Standard reconstruction

The standard reconstruction schemes such as total variation diminishing (TVD) schemes and different flavors of
higher-order essentially non-oscillatory or weighted compact schemes are available through a common interface.
The Reconstruction.reconstruct() allows reconstructing a series of variables using one of the available
schemes (see Reconstruction.Scheme for a list).

class Reconstruction.Scheme
An enum of the various different reconstruction schemes that are supported.

Minmod = 1
Minmod reconstruction.

Minmod reconstruction is performed as

𝜎𝑗 = minmod

(︂
𝑞𝑖 − 𝑞𝑖−1

∆𝜉
,
𝑞𝑖+1 − 𝑞𝑖

∆𝜉

)︂
. (3.1)

where ∆𝜉 is the grid spacing and minmod(𝑎, 𝑏) is defined as

minmod(𝑎, 𝑏) ={︂
sgn(𝑎) min(|𝑎|, |𝑏|) if sgn(𝑎) = sgn(𝑏)
0 otherwise

(3.2)

The reconstructed solution at the faces is given by

𝑞𝑖+1/2 = 𝑞𝑖 +
∆𝜉

2
𝜎𝑖

See, e.g. section 9.3.1 of [2] for a discussion.

Wcns3 = 2
Third order weighted compact nonlinear scheme reconstruction [3].

Third order WCNS3 reconstruction is done by first defining oscillation indicators 𝛽0 and 𝛽1 as

𝛽0 = (𝑞𝑖 − 𝑞𝑖−1)2 (3.3)

𝛽1 = (𝑞𝑖+1 − 𝑞𝑖)
2(3.4)

7

Pydro

Then coefficients 𝛼𝑘 are defined as

𝛼𝑘 =
𝑐𝑘

(𝛽𝑘 + 𝜖𝑘)2

where 𝜖𝑘 is a factor used to avoid division by zero and is set to

𝜖0 = 10−17 (1 + |𝑞𝑖| + |𝑞𝑖−1|) (3.5)

𝜖1 = 10−17 (1 + |𝑞𝑖| + |𝑞𝑖+1|)(3.6)

and the linear weights are 𝑐0 = 1/4 and 𝑐1 = 3/4. Finally, we define the nonlinear weights:

𝜔𝑘 =
𝛼𝑘∑︀1
𝑘=0 𝛼𝑘

The reconstruction stencils are given by:

𝑞0𝑖+1/2 =
3

2
𝑞𝑖 −

1

2
𝑞𝑖−1 (3.7)

𝑞1𝑖+1/2 =
1

2
𝑞𝑖 +

1

2
𝑞𝑖+1(3.8)

The final reconstructed solution is given by

𝑞𝑖+1/2 =

1∑︁
𝑘=0

𝜔𝑘𝑞
𝑘
𝑖+1/2

Wcns5 = 4
Fifth order weighted compact nonlinear scheme reconstruction [1].

The oscillation indicators are given by

𝛽0 =
1

4
(𝑞𝑖−2 − 4𝑞𝑖−1 + 3𝑞𝑖)

2
+ (𝑞𝑖−2 − 2𝑞𝑖−1 + 𝑞𝑖)

2 (3.9)

𝛽1 =
1

4
(𝑞𝑖−1 − 𝑞𝑖+1)

2
+ (𝑞𝑖−1 − 2𝑞𝑖+1)

2(3.10)

𝛽2 =
1

4
(3𝑞𝑖 − 4𝑞𝑖+1 + 𝑞𝑖+2)

2
+ (𝑞𝑖 − 2𝑞𝑖+1 + 𝑞𝑖+2)

2(3.11)

Then coefficients 𝛼𝑘 are defined as

𝛼𝑘 =
𝑐𝑘

(𝛽𝑘 + 𝜖𝑘)2

where 𝜖𝑘 is a factor used to avoid division by zero and is set to

𝜖0 = 2 × 10−16 (1 + |𝑞𝑖| + |𝑞𝑖−1| + |𝑞𝑖−2|) (3.12)

𝜖1 = 2 × 10−16 (1 + |𝑞𝑖| + |𝑞𝑖+1| + |𝑞𝑖−1|)(3.13)

𝜖2 = 2 × 10−16 (1 + |𝑞𝑖| + |𝑞𝑖+1| + |𝑞𝑖+2|)(3.14)

and the linear weights are 𝑐0 = 1/16, 𝑐1 = 10/16, and 𝑐2 = 5/16. Finally, we define the nonlinear
weights:

𝜔𝑘 =
𝛼𝑘∑︀2
𝑘=0 𝛼𝑘

The reconstruction stencils are given by:

𝑞0𝑖+1/2 =
3

8
𝑞𝑖−2 −

5

4
𝑞𝑖−1 +

15

8
𝑞𝑖, (3.15)

𝑞1𝑖+1/2 = −1

8
𝑞𝑖−1 +

3

4
𝑞𝑖 +

3

8
𝑞𝑖+1,(3.16)

𝑞2𝑖+1/2 =
3

8
𝑞𝑖 +

3

4
𝑞𝑖+1 −

1

8
𝑞𝑖+2.(3.17)

8 Chapter 3. Reconstruction Schemes

Pydro

The final reconstructed solution is given by

𝑞𝑖+1/2 =

2∑︁
𝑘=0

𝜔𝑘𝑞
𝑘
𝑖+1/2

Wcns5Weno = 6
Fifth order weighted compact nonlinear scheme reconstruction with the Jiang and Shu [4] weights.

Follows the procedure of Wcns5() except using the oscillation indicators given by

𝛽0 =
1

4
(𝑞𝑖−2 − 4𝑞𝑖−1 + 3𝑞𝑖)

2
+

13

12
(𝑞𝑖−2 − 2𝑞𝑖−1 + 𝑞𝑖)

2 (3.18)

𝛽1 =
1

4
(𝑞𝑖−1 − 𝑞𝑖+1)

2
+

13

12
(𝑞𝑖−1 − 2𝑞𝑖+1)

2(3.19)

𝛽2 =
1

4
(−3𝑞𝑖 + 4𝑞𝑖+1 − 𝑞𝑖+2)

2
+

13

12
(𝑞𝑖 − 2𝑞𝑖+1 + 𝑞𝑖+2)

2
.(3.20)

Wcns5z = 5
Fifth order weighted compact nonlinear scheme reconstruction with the 𝑍 oscillation indicator.

Follows the procedure of Wcns5() except using the oscillation indicators given by

𝛽𝑍
𝑘 =

𝛽𝑘 + 𝜖𝑘
𝛽𝑘 + 𝜏5 + 𝜖𝑘

where

𝜏5 = |𝛽2 − 𝛽0|

and the oscillation indicators are the ones from Jiang and Shu [4], as described in Wcns5Weno().

Weno3 = 3
Third order weighted essentially non-oscillarity reconstruction.

The same as the Wcns3() reconstruction except with 𝑐0 = 1/3 and 𝑐1 = 2/3.

Reconstruction.reconstruct(vars_to_reconstruct, scheme, order_used)
Reconstructs all variables using the requested scheme.

Parameters

• vars_to_reconstruct (list of list of double) – The variables at the cell
centers.

• scheme (Reconstruction.Scheme) – The reconstruction scheme to use.

• order_used (list of int) – Filled by the function and is used to return the order of
the reconstruction used.

Returns (list of list of double) The face reconstructed variables. Each variable is of length 2 *
number_of_cells

3.1. Standard reconstruction 9

Pydro

3.2 Positivity-preserving reconstruction

The PPAO schemes need to be wrapped in a function specific for each evolution system so that the appropriate variables
can have their positivity preserved.

ReconstructionPpao.adaptive_order_1(q, i, j, recons)
First-order reconstruction.

First-order reconstruction is given by

𝑞𝑖+1/2 = 𝑞𝑖

ReconstructionPpao.adaptive_order_3(q, i, j, recons, keep_positive, alpha=3.0, eps=1e-36)
Uses a third-order centered stencil for reconstruction

𝑞𝑖+1/2 =
1

8
𝑞𝑖−1 +

3

4
𝑞𝑖 +

3

8
𝑞𝑖+1

How oscillatory the resulting polynomial is can be determined by comparing

𝑠𝑗𝑁 =
1

2
log10

(︂
𝜅̄𝑁

𝜅𝑁 + 𝜖

)︂
,

where

𝜅̄3 =
2

5

(︂
3

4
𝑞𝑖+1 −

3

2
𝑞𝑖 +

3

4
𝑞𝑖−1

)︂2

, (3.21)

𝜅3 =

(︂
3

8
𝑞𝑖+1 +

1

4
𝑞𝑖 +

3

8
𝑞𝑖−1

)︂(︂
31

20
𝑞𝑖+1 −

1

10
𝑞𝑖 +

11

20
𝑞𝑖−1

)︂
,(3.22)

to

−𝛼 log10(4)

Typically 𝛼 ∼ 4 so that the coefficients decay as 1/34.

Parameters

• q (list of double) – The variable values at the cell centers.

• i (int) – The index into the reconstructed array

• j (int) – The index of the cell whose faces are being reconstructed in q

• recons (list of double) – The array of the reconstructed variable.

• keep_positive (bool) – If True then returns False if the reconstructed solution is not
positive.

• alpha (double) – The expected decay of increasing coefficients in the method.

• eps (double) – The epsilon parameter to ignore small values and impose an absolute
tolerance.

Returns (bool) True if the reconstruction was successful, otherwise False

ReconstructionPpao.adaptive_order_5(q, i, j, recons, keep_positive, alpha=5.0, eps=1e-36)
Uses a fifth-order centered stencil for reconstruction

𝑞𝑖+1/2 =
3

128
𝑞𝑖−2 −

5

32
𝑞𝑖−1 +

45

64
𝑞𝑖 +

15

32
𝑞𝑖+1 −

5

128
𝑞𝑖+2

Parameters

10 Chapter 3. Reconstruction Schemes

Pydro

• q (list of double) – The variable values at the cell centers.

• i (int) – The index into the reconstructed array

• j (int) – The index of the cell whose faces are being reconstructed in q

• recons (list of double) – The array of the reconstructed variable.

• keep_positive (bool) – If True then returns False if the reconstructed solution is not
positive.

• alpha (double) – The expected decay of increasing coefficients in the method.

• eps (double) – The epsilon parameter to ignore small values and impose an absolute
tolerance.

Returns (bool) True if the reconstruction was successful, otherwise False

ReconstructionPpao.adaptive_order_7(q, i, j, recons, alpha=5.0, eps=1e-36)
Uses a seventh-order centered stencil for reconstruction

𝑞𝑖+1/2 = − 5

1024
𝑞𝑖−3 +

21

512
𝑞𝑖−2 −

175

1024
𝑞𝑖−1 +

175

256
𝑞𝑖 (3.23)

+
525

1024
𝑞𝑖+1 −

35

512
𝑞𝑖+2 +

7

1024
𝑞𝑖+3(3.24)

Parameters

• q (list of double) – The variable values at the cell centers.

• i (int) – The index into the reconstructed array

• j (int) – The index of the cell whose faces are being reconstructed in q

• recons (list of double) – The array of the reconstructed variable.

• keep_positive (bool) – If True then returns False if the reconstructed solution is not
positive.

• alpha (double) – The expected decay of increasing coefficients in the method.

• eps (double) – The epsilon parameter to ignore small values and impose an absolute
tolerance.

Returns (bool) True if the reconstruction was successful, otherwise False

ReconstructionPpao.adaptive_order_9(q, i, j, recons, alpha=5.0, eps=1e-36)
Uses a ninth-order centered stencil for reconstruction

𝑞𝑖+1/2 =
35

32768
𝑞𝑖−4 −

45

4096
𝑞𝑖−3 +

441

8291
𝑞𝑖−2 −

735

4096
𝑞𝑖−1 (3.25)

+
11025

16384
𝑞𝑖 +

2205

4096
𝑞𝑖+1 −

735

8192
𝑞𝑖+2 +

63

4096
𝑞𝑖+3(3.26)

− 45

32768
𝑞𝑖+4(3.27)

Parameters

• q (list of double) – The variable values at the cell centers.

• i (int) – The index into the reconstructed array

• j (int) – The index of the cell whose faces are being reconstructed in q

• recons (list of double) – The array of the reconstructed variable.

3.2. Positivity-preserving reconstruction 11

Pydro

• keep_positive (bool) – If True then returns False if the reconstructed solution is not
positive.

• alpha (double) – The expected decay of increasing coefficients in the method.

• eps (double) – The epsilon parameter to ignore small values and impose an absolute
tolerance.

Returns (bool) True if the reconstruction was successful, otherwise False

ReconstructionPpao.adaptive_order_wcns3(q, i, j, recons, keep_positive, eps=1e-17, c0=0.25,
c1=0.75, liu_indicators=True, exponent=2)

A general third order weight compact nonlinear scheme.

Third order WCNS3 reconstruction is done by first defining oscillation indicators 𝛽0 and 𝛽1 as

𝛽0 = (𝑞𝑖 − 𝑞𝑖−1)2 (3.28)

𝛽1 = (𝑞𝑖+1 − 𝑞𝑖)
2(3.29)

We refer to these as the standard oscillation indicators, but also provide the improved oscillation indicators of
Liu [5]:

𝛽0 =
1

4
(|𝑞𝑖+1 − 𝑞𝑖−1| − |4𝑞𝑖 − 3𝑞𝑖−1 − 𝑞𝑖+1|)2 , (3.30)

𝛽1 =
1

4
(|𝑞𝑖+1 − 𝑞𝑖−1| − |3𝑞𝑖+1 + 𝑞𝑖−1 − 4𝑞𝑖|)2 .(3.31)

Then coefficients 𝛼𝑘 are defined as

𝛼𝑘 =
𝑐𝑘

(𝛽𝑘 + 𝜖𝑘)𝑝

where 𝜖𝑘 is a factor used to avoid division by zero and is set to

𝜖0 = 𝜖 (1 + |𝑞𝑖| + |𝑞𝑖−1|) (3.32)
𝜖1 = 𝜖 (1 + |𝑞𝑖| + |𝑞𝑖+1|)(3.33)

and the linear weights are 𝑐0 = 1/4 and 𝑐1 = 3/4. Finally, we define the nonlinear weights:

𝜔𝑘 =
𝛼𝑘∑︀1
𝑘=0 𝛼𝑘

The reconstruction stencils are given by:

𝑞0𝑖+1/2 =
3

2
𝑞𝑖 −

1

2
𝑞𝑖−1, (3.34)

𝑞1𝑖+1/2 =
1

2
𝑞𝑖 +

1

2
𝑞𝑖+1,(3.35)

The final reconstructed solution is given by

𝑞𝑖+1/2 =

1∑︁
𝑘=0

𝜔𝑘𝑞
𝑘
𝑖+1/2

Parameters

• q (list of double) – The variable values at the cell centers.

• i (int) – The index into the reconstructed array

• j (int) – The index of the cell whose faces are being reconstructed in q

12 Chapter 3. Reconstruction Schemes

Pydro

• recons (list of double) – The array of the reconstructed variable.

• keep_positive (bool) – If True then returns False if the reconstructed solution is not
positive.

• eps (double) – The epsilon parameter to avoid division by zero.

• c0 (double) – The optimal linear weight 𝑐0. For 3rd order use 1/4. For 2nd order but
increased robustness use 1/2.

• c1 (double) – The optimal linear weight 𝑐1. For 3rd order use 3/4. For 2nd order but
increased robustness use 1/2.

• liu_indicators (bool) – If True use the oscillation indicators of [5]

• exponent (int) – The exponent 𝑝 in denominator of the 𝛼𝑘

Returns (bool) True if the reconstruction was successful, otherwise False

ReconstructionPpao.adaptive_order_wcns3z(q, i, j, recons, keep_positive, eps=1e-17, c0=0.25,
c1=0.75, liu_indicators=True)

A general third order weight compact nonlinear scheme using the Z weights.

The same as adaptive_order_wcns3() except that the Z weights are used. First we define

𝜏3 = |𝛽1 − 𝛽0|

Then the new 𝛼𝑘 are given by

𝛼𝑘 = 𝑐𝑘

(︂
1 +

𝜏3
𝛽𝑘 + 𝜖𝑘

)︂
,

Parameters

• q (list of double) – The variable values at the cell centers.

• i (int) – The index into the reconstructed array

• j (int) – The index of the cell whose faces are being reconstructed in q

• recons (list of double) – The array of the reconstructed variable.

• keep_positive (bool) – If True then returns False if the reconstructed solution is not
positive.

• eps (double) – The epsilon parameter to avoid division by zero.

• c0 (double) – The optimal linear weight 𝑐0. For 3rd order use 1/4. For 2nd order but
increased robustness use 1/2.

• c1 (double) – The optimal linear weight 𝑐1. For 3rd order use 3/4. For 2nd order but
increased robustness use 1/2.

• liu_indicators (bool) – If True use the oscillation indicators of [5]

Returns (bool) True if the reconstruction was successful, otherwise False

ReconstructionPpao.adaptive_order_weno3_robust(q, i, j, recons, keep_positive, eps=1e-
17, c1=1.0, c2=1000.0, c3=1.0, expo-
nent=4, wenoz=False)

A robust WENO3 reconstruction using 5 points.

The individual polynomials stencils for the reconstruction are written as

𝑢(𝜉) = 𝑢0 + 𝑢𝜉𝑃1(𝜉) + 𝑢𝜉𝜉𝑃2(𝜉) (3.36)

3.2. Positivity-preserving reconstruction 13

Pydro

The left-, central-, and right-biased stencils for the one-dimensional coefficients are:

𝑢
(𝐿)
𝜉 =

1

2
𝑢−2 − 2𝑢−1 +

3

2
𝑢0 (3.37)

𝑢
(𝐿)
𝜉𝜉 =

𝑢−2 − 2𝑢−1 + 𝑢0

2
(3.38)

𝑢
(𝐶)
𝜉 =

1

2
(𝑢1 − 𝑢−1)(3.39)

𝑢
(𝐶)
𝜉𝜉 =

𝑢−1 − 2𝑢0 + 𝑢1

2
(3.40)

𝑢
(𝑅)
𝜉 = −3

2
𝑢0 + 2𝑢1 −

1

2
𝑢2(3.41)

𝑢
(𝑅)
𝜉𝜉 =

𝑢0 − 2𝑢1 + 𝑢2

2
.(3.42)

The oscillation indicators are given by

𝛽(𝑖) =
(︁
𝑢
(𝑖)
𝜉

)︁2

+
13

3

(︁
𝑢
(𝑖)
𝜉𝜉

)︁2

,

where 𝑖 ∈ {𝐿,𝐶,𝑅}. The nonlinear weights are:

𝜔𝑘 =
𝛼𝑘∑︀2
𝑙=0 𝛼𝑙

(3.43)

𝛼𝑘 =
𝜆𝑘

(𝛽𝑘 + 𝜖𝑘)𝑝
(3.44)

where 𝑝 is usually chosen to be 4 or 8, and 𝜆0 = 1, 𝜆1 = 105, and 𝜆2 = 1.

To obtain the WENOZ weights use 𝑝 = 1 and with the new oscillation indicators

𝛽𝑍
𝑘 =

𝛽𝑘

𝛽𝑘 + 𝜏5 + 𝜖𝑘

where

𝜏5 = |𝛽3 − 𝛽1|.

Parameters

• q (list of double) – The variable values at the cell centers.

• i (int) – The index into the reconstructed array

• j (int) – The index of the cell whose faces are being reconstructed in q

• recons (list of double) – The array of the reconstructed variable.

• keep_positive (bool) – If True then returns False if the reconstructed solution is not
positive.

• eps (double) – The epsilon parameter to avoid division by zero.

• c0 (double) – The linear weight 𝜆0.

• c1 (double) – The linear weight 𝜆1.

• c2 (double) – The linear weight 𝜆2.

• exponent (double) – The exponent 𝑝 in denominator of the 𝛼𝑘.

• wenoz (bool) – If True then use the WENOZ weights.

Returns (bool) True if the reconstruction was successful, otherwise False

14 Chapter 3. Reconstruction Schemes

CHAPTER

FOUR

TIME STEPPERS

Pydro offers a few different time steppers, including many strong-stability-preserving (SSP) time steppers. The linear
Runge-Kutta (RK) time steppers, while simple, should be avoided since they can only achieve the promised order
of accuracy for linear systems. The SSP RK3 and SSP RK4 are both robust choices for nonlinear hydrodynamics
simulations. The SSP RK4 has a maximum step size roughly 50% larger than an Euler step and the SSP RK3, making
it a more efficient method than the SSP RK3 There are also (mostly complete) Adams-Bashforth time steppers up to
fourth order, which still require a self-starting procedure in order to truly reach the high-order accuracy.

class TimeStepper.LinearRk4Ssp(time_deriv, initial_state, initial_time)
A fourth-order SSP linear Runge-Kutta method from [6]

Warning: This time stepper is a linear method and should not be used on nonlinear systems.

Warning: This time stepper passes None as the time.

Parameters

• time_deriv (funcion) – The time derivative function which must be invokable with
two arguments, the evolved variables and the time.

• initial_state (list) – A list of the values of the variables at the initial time.

• time (double) – Initial time.

get_cfl_coefficient()
Returns the CFL factor required for stability.

get_evolved_vars()
Returns an list of the evolved variables.

get_time()
Returns the current time.

take_step(dt)
Take a time step.

Parameters dt (double) – The time step size to use already including the CFL coefficient for
the time stepper.

class TimeStepper.LinearRk6Ssp(time_deriv, initial_state, initial_time)
A sixth-order SSP linear Runge-Kutta method from [6]

15

Pydro

Warning: This time stepper is a linear method and should not be used on nonlinear systems.

Warning: This time stepper passes None as the time.

Parameters

• time_deriv (funcion) – The time derivative function which must be invokable with
two arguments, the evolved variables and the time.

• initial_state (list) – A list of the values of the variables at the initial time.

• time (double) – Initial time.

get_cfl_coefficient()
Returns the CFL factor required for stability.

get_evolved_vars()
Returns an list of the evolved variables.

get_time()
Returns the current time.

take_step(dt)
Take a time step.

Parameters dt (double) – The time step size to use already including the CFL coefficient for
the time stepper.

class TimeStepper.LinearRk8Ssp(time_deriv, initial_state, initial_time)
A eighth-order SSP linear Runge-Kutta method from [6]

Warning: This time stepper is a linear method and should not be used on nonlinear systems.

Warning: This time stepper passes None as the time.

Parameters

• time_deriv (funcion) – The time derivative function which must be invokable with
two arguments, the evolved variables and the time.

• initial_state (list) – A list of the values of the variables at the initial time.

• time (double) – Initial time.

get_cfl_coefficient()
Returns the CFL factor required for stability.

get_evolved_vars()
Returns an list of the evolved variables.

get_time()
Returns the current time.

16 Chapter 4. Time Steppers

Pydro

take_step(dt)
Take a time step.

Parameters dt (double) – The time step size to use already including the CFL coefficient for
the time stepper.

class TimeStepper.Rk3Ssp(time_deriv, initial_state, initial_time)
A third-order strong-stability-preserving nonlinear Runge-Kutta time stepper [7]

Denoting the time derivative operator by ℒ, the stepper is given by

𝑣(1) = 𝑞𝑛 + ∆𝑡ℒ(𝑢𝑛, 𝑡𝑛) (4.1)

𝑣(2) =
1

4

[︁
3𝑞𝑛 + 𝑣(1) + ∆𝑡ℒ

(︁
𝑣(1), 𝑡𝑛 + ∆𝑡

)︁]︁
(4.2)

𝑞𝑛+1 =
1

3

[︂
𝑞𝑛 + 2𝑣(2) + 2∆𝑡ℒ

(︂
𝑣(2), 𝑡𝑛 +

1

2
∆𝑡

)︂]︂
(4.3)

Parameters

• time_deriv (funcion) – The time derivative function which must be invokable with
two arguments, the evolved variables and the time.

• initial_state (list) – A list of the values of the variables at the initial time.

• time (double) – Initial time.

get_cfl_coefficient()
Returns the CFL factor required for stability.

get_evolved_vars()
Returns an list of the evolved variables.

get_time()
Returns the current time.

take_step(dt)
Take a time step.

Parameters dt (double) – The time step size to use already including the CFL coefficient for
the time stepper.

class TimeStepper.Rk4Ssp(time_deriv, initial_state, initial_time)
A fourth-order strong-stability-preserving nonlinear Runge-Kutta time stepper [7]

17

Pydro

Denoting the time derivative operator by ℒ, the stepper is given by

𝑣(1) = 𝑞𝑛 + 0.39175222700392∆𝑡ℒ(𝑢𝑛, 𝑡𝑛) (4.4)

𝑣(2) = 0.44437049406734𝑞𝑛 + 0.55562950593266𝑣(1)(4.5)

+ 0.36841059262959∆𝑡ℒ
(︁
𝑣(1), 𝑡𝑛 + 0.39175222700392∆𝑡

)︁
(4.6)

𝑣(3) = 0.6201018513854𝑞𝑛 + 0.3798981486146𝑣(2)(4.7)

+ 0.25189177424738∆𝑡ℒ
(︁
𝑣(2), 𝑡𝑛 + 0.5860796889678∆𝑡

)︁
(4.8)

𝑣(4) = 0.17807995410773𝑞𝑛 + 0.82192004589227𝑣(3)(4.9)

+ 0.54497475021237∆𝑡ℒ
(︁
𝑣(3), 𝑡𝑛 + 0.47454236302687∆𝑡

)︁
(4.10)

𝑞𝑛+1 = 0.00683325884039𝑞𝑛 + 0.51723167208978𝑣(2)(4.11)

+ 0.12759831133288𝑣(3) + 0.34833675773694𝑣(4)(4.12)

+ 0.08460416338212∆𝑡ℒ
(︁
𝑣(3), 𝑡𝑛 + 0.47454236302687∆𝑡

)︁
(4.13)

+ 0.22600748319395∆𝑡ℒ
(︁
𝑣(4), 𝑡𝑛 + 0.93501063100924∆𝑡

)︁
(4.14)

(4.15)

Parameters

• time_deriv (funcion) – The time derivative function which must be invokable with
two arguments, the evolved variables and the time.

• initial_state (list) – A list of the values of the variables at the initial time.

• time (double) – Initial time.

get_cfl_coefficient()
Returns the CFL factor required for stability.

get_evolved_vars()
Returns an list of the evolved variables.

get_time()
Returns the current time.

take_step(dt)
Take a time step.

Parameters dt (double) – The time step size to use already including the CFL coefficient for
the time stepper.

18 Chapter 4. Time Steppers

CHAPTER

FIVE

REFERENCES

19

Pydro

20 Chapter 5. References

CHAPTER

SIX

INDICES AND TABLES

• genindex

• modindex

• search

21

Pydro

22 Chapter 6. Indices and tables

BIBLIOGRAPHY

[1] Taku Nonomura and Kozo Fujii. Robust explicit formulation of weighted compact nonlinear scheme. Com-
puters & Fluids, 85:8 – 18, 2013. International Workshop on Future of CFD and Aerospace Sciences.
doi:10.1016/j.compfluid.2012.09.001.

[2] Rezzolla, L. and Zanotti, O. Relativistic Hydrodynamics. Oxford University Press, sep 2013. URL:
{http://adsabs.harvard.edu/abs/2013rehy.book.R}.

[3] Xiaogang Deng and Hanxin Zhang. Developing high-order weighted compact nonlinear schemes. Journal of Com-
putational Physics, 165(1):22 – 44, 2000. doi:10.1006/jcph.2000.6594.

[4] Guang-Shan Jiang and Chi-Wang Shu. Efficient implementation of weighted eno schemes. Journal of Computa-
tional Physics, 126(1):202 – 228, 1996. doi:10.1006/jcph.1996.0130.

[5] Shengping Liu, Yiqing Shen, Bei Chen, and Fangjun Zeng. Novel local smoothness indicators for improv-
ing the third-order weno scheme. International Journal for Numerical Methods in Fluids, 87(2):51–69, 2018.
doi:10.1002/fld.4480.

[6] Sigal Gottlieb, Chi-Wang Shu, and Eitan Tadmor. Strong stability-preserving high-order time discretization meth-
ods. SIAM Review, 43:, 05 2001. doi:10.1137/S003614450036757X.

[7] Jan S Hesthaven and Tim Warburton. Nodal discontinuous Galerkin methods: algorithms, analysis, and applica-
tions. Springer Science & Business Media, 2007.

23

https://doi.org/10.1016/j.compfluid.2012.09.001
\protect \T1\textbraceleft http://adsabs.harvard.edu/abs/2013rehy.book.....R\protect \T1\textbraceright
https://doi.org/10.1006/jcph.2000.6594
https://doi.org/10.1006/jcph.1996.0130
https://doi.org/10.1002/fld.4480
https://doi.org/10.1137/S003614450036757X

Pydro

24 Bibliography

PYTHON MODULE INDEX

d
Derivative, 3

p
Plotting, 5

r
Reconstruction, 7
ReconstructionPpao, 10

t
TimeStepper, 15

25

Pydro

26 Python Module Index

INDEX

A
adaptive_order_1() (in module Reconstruc-

tionPpao), 10
adaptive_order_3() (in module Reconstruc-

tionPpao), 10
adaptive_order_5() (in module Reconstruc-

tionPpao), 10
adaptive_order_7() (in module Reconstruc-

tionPpao), 11
adaptive_order_9() (in module Reconstruc-

tionPpao), 11
adaptive_order_wcns3() (in module Reconstruc-

tionPpao), 12
adaptive_order_wcns3z() (in module Recon-

structionPpao), 13
adaptive_order_weno3_robust() (in module

ReconstructionPpao), 13

D
Derivative

module, 3
differentiate_flux() (in module Derivative), 4

G
generate_plot_with_reference() (in module

Plotting), 5
generate_spacetime_plot() (in module Plot-

ting), 5
get_cfl_coefficient() (TimeStep-

per.LinearRk4Ssp method), 15
get_cfl_coefficient() (TimeStep-

per.LinearRk6Ssp method), 16
get_cfl_coefficient() (TimeStep-

per.LinearRk8Ssp method), 16
get_cfl_coefficient() (TimeStepper.Rk3Ssp

method), 17
get_cfl_coefficient() (TimeStepper.Rk4Ssp

method), 18
get_evolved_vars() (TimeStepper.LinearRk4Ssp

method), 15
get_evolved_vars() (TimeStepper.LinearRk6Ssp

method), 16

get_evolved_vars() (TimeStepper.LinearRk8Ssp
method), 16

get_evolved_vars() (TimeStepper.Rk3Ssp
method), 17

get_evolved_vars() (TimeStepper.Rk4Ssp
method), 18

get_time() (TimeStepper.LinearRk4Ssp method), 15
get_time() (TimeStepper.LinearRk6Ssp method), 16
get_time() (TimeStepper.LinearRk8Ssp method), 16
get_time() (TimeStepper.Rk3Ssp method), 17
get_time() (TimeStepper.Rk4Ssp method), 18

L
LinearRk4Ssp (class in TimeStepper), 15
LinearRk6Ssp (class in TimeStepper), 15
LinearRk8Ssp (class in TimeStepper), 16

M
MD (Derivative.Scheme attribute), 3
MD10 (Derivative.Scheme attribute), 3
MD4 (Derivative.Scheme attribute), 3
MD6 (Derivative.Scheme attribute), 3
MD8 (Derivative.Scheme attribute), 3
MDV (Derivative.Scheme attribute), 4
Minmod (Reconstruction.Scheme attribute), 7
MND10 (Derivative.Scheme attribute), 4
MND4 (Derivative.Scheme attribute), 4
MND6 (Derivative.Scheme attribute), 4
MND8 (Derivative.Scheme attribute), 4
MNDV (Derivative.Scheme attribute), 4
module

Derivative, 3
Plotting, 5
Reconstruction, 7
ReconstructionPpao, 10
TimeStepper, 15

P
Plotting

module, 5

R
reconstruct() (in module Reconstruction), 9

27

Pydro

Reconstruction
module, 7

ReconstructionPpao
module, 10

Rk3Ssp (class in TimeStepper), 17
Rk4Ssp (class in TimeStepper), 17

S
Scheme (class in Derivative), 3
Scheme (class in Reconstruction), 7

T
take_step() (TimeStepper.LinearRk4Ssp method), 15
take_step() (TimeStepper.LinearRk6Ssp method), 16
take_step() (TimeStepper.LinearRk8Ssp method), 16
take_step() (TimeStepper.Rk3Ssp method), 17
take_step() (TimeStepper.Rk4Ssp method), 18
TimeStepper

module, 15

W
Wcns3 (Reconstruction.Scheme attribute), 7
Wcns5 (Reconstruction.Scheme attribute), 8
Wcns5Weno (Reconstruction.Scheme attribute), 9
Wcns5z (Reconstruction.Scheme attribute), 9
Weno3 (Reconstruction.Scheme attribute), 9

28 Index

	Derivatives
	Plotting 1d Simulation
	Reconstruction Schemes
	Time Steppers
	References
	Indices and tables
	Bibliography
	Python Module Index
	Index

